首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2330篇
  免费   284篇
  国内免费   96篇
  2024年   8篇
  2023年   51篇
  2022年   83篇
  2021年   123篇
  2020年   103篇
  2019年   108篇
  2018年   87篇
  2017年   78篇
  2016年   79篇
  2015年   97篇
  2014年   198篇
  2013年   145篇
  2012年   127篇
  2011年   164篇
  2010年   103篇
  2009年   125篇
  2008年   128篇
  2007年   104篇
  2006年   128篇
  2005年   109篇
  2004年   87篇
  2003年   58篇
  2002年   46篇
  2001年   29篇
  2000年   24篇
  1999年   35篇
  1998年   36篇
  1997年   25篇
  1996年   20篇
  1995年   21篇
  1994年   22篇
  1993年   18篇
  1992年   15篇
  1991年   16篇
  1990年   16篇
  1989年   11篇
  1988年   7篇
  1987年   4篇
  1985年   4篇
  1984年   8篇
  1983年   10篇
  1982年   10篇
  1981年   8篇
  1980年   7篇
  1979年   4篇
  1978年   5篇
  1976年   4篇
  1975年   2篇
  1973年   3篇
  1971年   3篇
排序方式: 共有2710条查询结果,搜索用时 31 毫秒
1.
The resorption of unemitted gametes during the post-spawning period of the male and female reproductive cycles in Lithognathus mormyrus was studied by histochemical, histological and cytological methods. The resorption of residual spermatozoa involved the phagocytotic activity of Sertoli cells bounding the seminiferous cysts of spermatozoa, and those associated with spermatogonia lining the lobular lumen. Spermatozoa remaining in the sperm duct were phagocytozed by the lining epithelial cells. Eosinophilic granulocytes and macrophages were identified in the vicinity of residual spermatozoa. The remnants of oocytes underwent an atretic phenomenon in which follicle cells were firstly involved, inducing a progressive fragmentation of the oocyte cytoplasm. Subsequently, eosinophilic granulocytes invaded oocyte degenerative areas and clung to the remaining vitelline inclusions ensuring their biotransformation into waste products (brown bodies). The analogy of the resorption processes of both male and female unemitted gametes during the post-spawning period of natural reproductive cycle, involving first the enveloping somatic cells and then immune cells, is emphasized.  相似文献   
2.
《Process Biochemistry》2014,49(12):2207-2213
Enhanced biological phosphorus removal (EBPR) technology has been widely considered as a key strategy in preventing eutrophication and recognized as the advancing front of research in wastewater treatment. The key to keep its high efficiency in biological phosphorus removal is to optimize the operation and management of the system. Previous research in this field has undoubtedly improved understanding of the factors hindered overall efficiency of EBPR. However, it is obvious that much remains to be learnt. This paper attempts to review the fundamental understanding in factors inhibiting the stability and reliability of the EBPR systems in the state-of-the-art research. In view of modeling the EBPR systems, an appropriate extension of the current mechanistic models with these inhibitory factors is recommended in order to better simulate and predict the behavior of full-scale and lab-scale EBPR plants. From the perspectives of the further mechanistic and multi-factors study, the direction of denitrifying dephosphatation and granules/biofilms are also discussed. This comprehensive overview will not only help us to understand the overall mechanism of the EBPR process, but also benefit the researchers and engineers to consider all the possible factors affecting the process in the urban sewage treatment plants.  相似文献   
3.
Nucleoside transporters have a variety of functions in the cell, such as the provision of substrates for nucleic acid synthesis and the modulation of purine receptors by determining agonist availability. They also transport a wide range of nucleoside-derived antiviral and anticancer drugs. Most mammalian cells coexpress several nucleoside transporter isoforms at the plasma membrane, which are differentially regulated. This paper reviews studies on nucleoside transporter regulation, which has been extensively characterized in the laboratory in several model systems: the hepatocyte, an epithelial cell type, and immune system cells, in particular B cells, which are non-polarized and highly specialized. The hepatocyte co-expresses at least two Na+-dependent nucleoside transporters, CNT1 and CNT2, which are up-regulated during cell proliferation but may undergo selective loss in certain experimental models of hepatocarcinomas. This feature is consistent with evidence that CNT expression also depends on the differentiation status of the hepatocyte. Moreover, substrate availability also modulates CNT expression in epithelial cells, as reported for hepatocytes and jejunum epithelia from rats fed nucleotide-deprived diets. In human B cell lines, CNT and ENT transporters are co-expressed but differentially regulated after B cell activation triggered by cytokines or phorbol esters, as described for murine bone marrow macrophages induced either to activate or to proliferate. The complex regulation of the expression and activity of nucleoside transporters hints at their relevance in cell physiology.  相似文献   
4.
5.
6.
Summary It has been suggested that the immune system might figure prominently in the regulation of forelimb regeneration. However, neither the nature of this influence nor the aspect(s) of regeneration influenced are clearly known. The determination of which components of the immune system are indispensable for regeneration would be a logical first step in attempting to address such questions. This investigation, therefore, examined the effects of removing the spleen, a major lymphoid organ in the newt, upon the progress of regeneration. Splenectomies performed concomitantly with or after forelimb amputation failed to alter the time course of regeneration. Splenectomies, but not sham-splenectomies, performed prior to amputation reduced the time required to achieve successive stages of regeneration under some, but not all conditions, i.e., when performed 10–20 days before amputation, during the late fall and winter. Up until 35 days after amputation, no gross morphological distortions were observed as a result of splenectomy. It was concluded that the spleen is not required for regeneration to occur.Portions of this work constitute part of the thesis submitted by M.E. Fini in partial fulfillment of the requirements for the M.S. degree in Biology at Boston College  相似文献   
7.
8.
When intact Toxoplasma trophozoites were stained with isotonic alkaline methylene blue solution, the organelles rich in nucleic acid, i.e., nucleus, free and membrane-bound ribosomes appeared as electron dense areas. When the parasites were incubated with the anti-Toxoplasma antibody and the accessory factor, swelling of the surface membrane occurred first, followed by destruction of the inner structures. In the dye test positive parasites, there were no definite organelles recognizable, as there were in the intact parasites. By the negative staining method, holes (defects) with dark central portions were observed on the surface of the parasites treated with the antibody and the accessory factor, the diameter of the holes measuring about 10–11 nm. These holes, which tended to occur in clusters, were each surrounded by a clear ring.  相似文献   
9.
Cytotoxic lymphocytes eliminate virally infected or neoplastic cells through the action of cytotoxic proteases (granzymes). The pore-forming protein perforin is essential for delivery of granzymes into the cytoplasm of target cells; however the mechanism of this delivery is incompletely understood. Perforin contains a membrane attack complex/perforin (MACPF) domain and oligomerizes to form an aqueous pore in the plasma membrane; therefore the simplest (and best supported) model suggests that granzymes passively diffuse through the perforin pore into the cytoplasm of the target cell. Here we demonstrate that perforin preferentially delivers cationic molecules while anionic and neutral cargoes are delivered inefficiently. Furthermore, another distantly related pore-forming MACPF protein, pleurotolysin (from the oyster mushroom), also favors the delivery of cationic molecules, and efficiently delivers human granzyme B. We propose that this facilitated diffusion is due to conserved features of oligomerized MACPF proteins, which may include an anionic lumen.  相似文献   
10.
Protein kinase A (PKA) enhances synaptic plasticity in the central nervous system by increasing NMDA receptor current amplitude and Ca2+ flux in an isoform-dependent yet poorly understood manner. PKA phosphorylates multiple residues on GluN1, GluN2A, and GluN2B subunits in vivo, but the functional significance of this multiplicity is unknown. We examined gating and permeation properties of recombinant NMDA receptor isoforms and of receptors with altered C-terminal domain (CTDs) prior to and after pharmacological inhibition of PKA. We found that PKA inhibition decreased GluN1/GluN2B but not GluN1/GluN2A gating; this effect was due to slower rates for receptor activation and resensitization and was mediated exclusively by the GluN2B CTD. In contrast, PKA inhibition reduced NMDA receptor-relative Ca2+ permeability (PCa/PNa) regardless of the GluN2 isoform and required the GluN1 CTD; this effect was due primarily to decreased unitary Ca2+ conductance, because neither Na+ conductance nor Ca2+-dependent block was altered substantially. Finally, we show that both the gating and permeation effects can be reproduced by changing the phosphorylation state of a single residue: GluN2B Ser-1166 and GluN1 Ser-897, respectively. We conclude that PKA effects on NMDA receptor gating and Ca2+ permeability rely on distinct phosphorylation sites located on the CTD of GluN2B and GluN1 subunits. This separate control of NMDA receptor properties by PKA may account for the specific effects of PKA on plasticity during synaptic development and may lead to drugs targeted to alter NMDA receptor gating or Ca2+ permeability.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号